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Reversible and irreversible emittance growth
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Emittance growth in bunched charged particle beams in linear accelerators is considered in the case of a
Hamiltonian system where nonlinear and time-dependent forces are dominant. Emittance growth is divided
into two classes: reversible and irreversible depending on the corresponding entropy change. We consider the
case where the measurement resolution is important. We show that a generalized free-energy function acts as
a driver for phase-space evolution and emittance grop@h063-651X98)09501-4

PACS numbes): 41.75-i, 29.27.Fh

[. INTRODUCTION of merit for beam optical quality. We define the normalized
rms emittance of a bunch as[8,9 e,,(2)
In this paper we investigate the issue of the reversibility= (1/mc) V(x2)(pZ) — (xp,)?, wherez is the laboratory co-
of rms emittance growth in Hamiltonian systems. We discus®rdinate of the beam centroid, axdand p, are conjugate
the emittance growth of bunched beams in the presence apatial and momentum coordinates, respectively, the brack-
time-dependent nonlinear space-charge and external forcests represent averages over the particle distributiois the
In particular, we consider the case of nonthermalized relativparticle mass, and is the velocity of light. Similar expres-
istic electron beamEL] in linear accelerators where interpar- sions can be written for thg and z emittances. It is well
ticle collisional processes are not important in determiningknown thate, , is invariant under time-independent linear
emittance growth. To determine whether emittance growth isymplectic transformationsl 0], but not necessarily in other
reversible or not, we consider the changes in the entropy adeterministic processes such as when nonlinear forces, or
the distribution in the case where the resolution of the phaseerces that are correlated with the longitudinal position in the
space measuremefin simulation and in experimenis of  particle bunch, are present.
significance. In addition, we consider a generalized free- In Sec. Il we begin our analysis by introducing an entropy
energy principle, which includes external and internal non-concept suitable for use with bunched beams where the reso-
linear and time varying forces. We derive an expression for dution of a measuring apparatus is considered. In Sec. lll we
generalized thermodynamic potential, analogous to thelevelop a variant of the relationship between the entropy and
Helmholtz free energy, which may be considered to act as the rms emittance of the bunch, in which we consider the
driver for emittance growth. bunch to comprise a number of sub-bunches or slices in time
The topic of reversible and irreversible emittance growthor in longitudinal spatial coordinates. In Sec. IV, we intro-
is related to that of reversible and irreversible beam dynameuce the concept of an emittance correlation coeffigiias
ics, which have been addressed previously both theoretically measure of the degree in which differential rotation of the
[2—4] and experimentally5,6] for special cases. In previous phase space of individual slices resulting from time-
work the onset of irreversible dynamics has been describedependent forces contributes to the total emittance of the
in terms of the cessation of laminar particle motion as manibunch. We show that, even when increasing external emit-
fested by trajectory crossing in phase space in the infinitéance forces are included, a generalized free-energy principle
resolution limit. The possibility that rms emittance growth is valid. We use these concepts to develop a formalism for
resulting from time-dependent space-charge forces in rf phcemittance growth both with and without entropy growth in
toinjectors could be reversible under certain circumstanceSecs. V and VI.
was proposed by CarlstdB]. The validity of this proposal
has been demonstrated experimentally both indir¢6flyand
directly[6]. There are many other forms of emittance growth
which may under certain circumstances be reversible. In ad- The general connection between emittance and entropy
dition to the aforementioned space-charge effects, we havewaas made over two decades ago by Lawson, Lapostolle, and
number of other forces, e.g., time-dependent rf fields, nonGluckstern[11]. More recently, the connection between
linear focusing, wake fields, and coherent synchrotron radiaemittance growth and entropy growth has been noted by a
tion in bends. The purpose of this paper is to develop aumber of other authorf4,8,12—16, and has been devel-
general formalism. Therefore, we do not discuss the detaileped in connection with beams where non-Hamiltonian sto-
of specific emittance growth mechanisms. A comprehensivehastic processes are important and where the external forces
treatment of emittance growth mechanisms can be found iare linear and time independégi].
Ref.[7]. In equilibrium thermodynamics, entropy is considered to
The rms emittance is a practical, and widely used, figurébe either a macroscopic quantity or a microscopic quantity of
a statistical ensemble. In the macroscopic thermodynamic
concept, entropy cannot be defined for a system that is not in
*Electronic address: oshea@fel.duke.edu thermal equilibrium. In general, beams in linear accelerators

II. ENTROPY CONCEPT
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are not in thermal equilibriurf17], and the nonequilibrium tion, it is possible for a process that is strictly Hamiltonian in
region may extend from the cathode to the beam dump. Imature to result in an entropy change if a larger, rather than a
this paper we will consider only the statistical interpretationsmaller, value ofAg is chosen[12]. This concept will be

of entropy as a measure of the information available about anportant in determining whether or not emittance growth is

distribution. reversible in a particular situation.
In the most general sense the statistical entropy of a sys- We may also consider the cell size concept in relation to
tem can be writtei18] the trajectory-crossing condition for the onset of irreversible

dynamics of previous work2,3]. Trajectories with an initial
separatiomR in phase space which later have zero separa-
tion are said to have crossed. If we consider two trajectories
with initial separatiom R>$/Ag, that later have a separation
wherekg is Boltzmann’s constant, denotes a microcanoni- AR<§/A;, then the entropy will appear to have grown. Set-
cal state of the systenf;; is the statistical probability of that ting A;=0 in the entropy formalism results in an irrevers-

S=—kg>, filn(f)), (1)

state, and®;f;=1. ibility criterion equivalent to the nonlaminarity condition.
In the case of a bunched beam with a very large number
of particles (\) per bunch we can write the sum as an inte- Ill. RELATIONSHIP BETWEEN ENTROPY
gral by noting that a state corresponds to a six-dimensional AND RMS EMITTANCE
volume elemenfg= X p,dy dp, 6L op,, and the probabil- . ]
ity is equivalent to the product okg times the distribution We now proceed to develop a useful relationship between
function ps=p(X,Py.Y,Py,{,P,), SO that entropy and rms emittance. In the analysis that follows, we

will develop a formalism that allows for rms emittance
growth both with and without entropy growth.

SGZ_kBNJ pein[Agpsldx dpdy dpd{ dp, (2) When considering bunched beams with longitudinal as
well as transverse structures, it is useful to divide the bunch

where we choose the normalizatifpg(x)d®x=1. The time  into a number of sub-bunches or slices of longitudinal length
derivative of the entropy is given by S= &8¢ in the laboratory frame, wheré/< o}, the bunch length,

—kgNJ psIn[Agpsldx dpdy dpd¢ dp;. Therefore the entropy and{ is the longitudinal coordinate of the sub-bunch relative
of a distribution is invariant in a Hamiltonian system in {0 the centroid of the bunch. Consider each sub-bunch to

which Liouville’s theorem is validjf the variation of pg contain a large number of particlell, . The e!'lsemble en-
across the cell is negligible tropy of the bunch is the sum of the entropies of the sub-

How should we choose the size of the volume elemenPUnches, i.e.3(z)=2,S/(z), wheresS, is the entropy of the
Ag? The quantum-mechanical lower boundif which is sub-bunch, andz is the coordinate of the bunch centroid
an unrealistically small value for a practical system. Such 4€lative to the laboratory. Furthermore, we assume that the
volume element would have a two-dimensional normalizedongitudinal momentum spreaip, within each slice is small
emittance of 3.8 10~ 7 mm mrad. Therefore. we should €lative to the average momentum of the slice. If the longi-
choose a larger value @ based on the limits of our ability tudinal density distribution is p({,p,), then N,

to make observations of the beam, i.e., on the resolution of 940P:2(£.p,). The slice entropy and the rms emittance
our instrumentation, on the precision with which we can ap£an be readily evaluated for specific distribution functions. If

ply external forces, or on the limits of physical phenomena/e consid_er a s_pecific'cla.lss pf distribytion functiong where
of interest. It is possible to consider that an apparatus gdhe foqr-d|m(_an3|onal distribution function of each slice can
signed to measure emittance by mapping the phase-spabg Written in separable form such thai(x,px.y,py)
distribution could also be used to measure entropy. Sucfr Px(X:Px)py(Y.Py), then, from Eq.(2), S,(2)=S,x(2)
devices include so-called pepper pots, and slit-and-collectot Sz.y(2), where
devices[19]. A suitable choice forAg might relate to the
resolution of such an apparatus. T_herefore, we assume thfat Six(2)= —kB5§5ng(§,pg)f py(y.py)dy dp,
we have no knowledge of changes in the phase-space density
on scales smaller thaAg. All techniques for measuring Py(X, )
phase-space distributions involve segmentation of data into Xj px(x,px)ln(A—>dx dp,
bins analogous tég, or its lower-dimensional analog. If we x
identify Ag=AxAp,AyAp,A{Ap,, [or as we will discuss
later |ts_ two-dlmen5|ona(l_2D) analogA,= AxAp,], with the Siy(2)=— kB5§5ng(§apg)f px(X,Py)dx dp,
resolution of the measuring apparatus, thhgmepresents the
averaged value over each cell. For the subsequent analysis to py(Y,Py)
be meaningful, one must chose the size of the volume ele- X f py(y,py)ln<A—>dy dp,
ment to be much less than the volume occupied by the beam. Y
Whether or not a measured entropy change occurs in g
specific case will depend on our choice &, i.e., on how
coarsely we divide phase space. If our apparatus had infini- XOpx=A, Syopy=A,.
tesimal resolution and infinite dynamic range, then there
would be no possible entropy change for a Hamiltonian sysFor clarity, in this paper we will assume cylindrical symme-
tem. Because of the coarse graining of the distribution functry such that,S,(z) =2S;,(z), A,=A,=A,, and thate, ,
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TABLE I. Distribution parameter@) for some common distri-  tance of the bunch. Various effects such as nonuniform lon-

bution functions. gitudinal space-charge distributions, transverse wake fields,
and phase-dependent rf forces will result in the twisting of
Distribution r=x*+x"?) Distribution parameter@)  the phase space being correlated with position of the indi-
Gaussian  g-r%2? Dem~b A vidual slices in the bunch. The second, time-independent
) ) component of emittance growth results from growth in the
Parabolic 1— r_z r<a emittance of individual slices. Such time-independent growth
a results from nonlinear spatial forces.
0 r>a Sm We assume, for convenience, that on scales shorter than
the slice lengths{ that the transverse phase space is uncor-
Uniform 1 r<a related with¢, i.e., we have no knowledge of the details of
0 r>a A the time dependence of the distribution on scales shorter than
8. On scales longer thaé, we assume that there may be
Hollow r2e—r220? 3.105r correlations between the phase space and the location of the

slice in the bunch.
The phase-space orientation of fite slice may be char-

=eyn=¢¢n(¢,2). The number of occupied cells in 2D phase acterized by Twiss parametersz,—a(g 2), Bi=B(.2),
space is given by expf/2kgN,) [14]. Therefore the total andy;=y({,z), with & 2+ 1=p,% . We envision processes
phase-space ared2) occupied by the slice isY where the phase-space distribution of the beam evolves such
=A,exp§&/2kgN,). For a given distribution function, we that the Twiss parameters change in a fashion determined by
can write EI'EM:D, where D is a unitless distribution- ¢-dependent forces. If the forces that determine the phase-
dependent parameter which may vary from slice to slicespace evolution are correlated Jr{i.e., nonstochastjcthen
Therefore, we can write the relationship between the slicéhe phase-space evolution will be correlated/ialso. The
entropy and the slice emittance as emittance change of each sub-bunch is determined by non-
linear and stochastic transverse forces.

We can write the normalized rms emittance of the bunch
for thex coordinate in terms of the slice emittances and slice
Twiss parameters as
We can evaluatd for specific distributions, as shown in _ )

Table I. We expecD to be largest for a Gaussian distribu- € n(2)

tion because the maximum entropy state corresponds to that

of an equilibrium Maxwell-Boltzmann distribution, which _| = P ~ 2

will have a Gaussian distribution in phase space when space- egyn(g’,z)ﬂ(g,z)p(g)dgf eon(6:2)7(82)p(0)dL
charge forces are not importar0,21. 2

Because the entropy of the bunch is simply a sum of the _( f ’ggin(g,z)gy(g,z)p(g)dg)
subentropies, the bunch entropy does not depend on the ori-
entation of the individual slices in phase space. Therefore, it _ ~ P ~ A
is useful to introduce a quantity called the entropy of the =(enl£2)B gz))(s{n(g 2)7(¢.2))
average slice5,y, which is defined with respect to the av- —(sgn(g 2)a(L,2))%. (5
erage slice emittance of the bunch as

Dz,

To aid in distinguishing between time-dependent and time-

D(esn) independent emittance growth, we define an rms emittance

) (4) correlation coefficien€ such thatC?(z) =z 2/(s§n>2 Since

en(2)=%¢,, always,C(z)=1 always. When all the equiva-
where (g, )= %, .p({)d{ is the slice emittance averaged lent phase-space ellipses of the slices are alig@es], its
over the bunch. minimum value. We consider the phase-space slice to be

Si;y has similar properties to the total entropy of thealigned when the Twiss parameters are independery, of

bunch. In particularAS >0 whenAS>0, andAS,)=0 such thatx, andB andy can be taken outside the average

S<S>(Z) = 2kBN |n(

whenAS=0. operators in Eq(5) resulting ine,(z)= sm When the el-
lipses are not aligned;>1, because of the differential ex-
IV. DIEEERENTIAL PHASE-SPACE ROTATION AND THE pansion of the slices and rotation of each phase-space slice
CORRELATED EMITTANCE COEEFICIENT with respect to its neighbor. DifferentiatinG(z) with re-

spect toz gives

In our formalism, we consider transverse emittance
growth to have two componentime dependenand time d dc? 22z d(In(e,n))
independent The time-dependent component involves the =(z,, n)? dz o, T2¢ T- (6)
differential rotation of the slices in phase space. In a time-
dependent transformation the orientation of the individual Changes in the total rms emittance of the bunch occur
slices with respect to each other is invariant. For time-either from changes in the phase-space correlations or from
dependent transformations the relative orientations of thehanges in the slice emittances. It is also possiblésfoto
slices may change, and result in a growth in the rms emitremain constant whil€€ decreases, and for the slice emit-
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tance to increase as the beam is transported through the acdz ﬁ(z) . . o
celerator. It is now appropriate to examine this in the context 4z =(e B W Eeny) T ernB)(ErnY') —2(e ¢ n¥)
of entropy changes. Substituting E@l) into Eq. (6), we

obtain

X(B g na@’ )+ {(Zn) BYE ')+ (E enB)
ds 2 dc? 227dD =} d(Sy)

dz "’ @D a2 kN az X((Ben)' )~ 2End) Fen) @), ©)

wheree , and the Twiss parameters are functions of hpth
Let us consider the physical interpretation of Ef). We  andz. By noting that
will consider two cases: one where the entropy change is
zero, the other where the entropy change is nonzero.

yOXX') 7{%)
V. EMITTANCE CHANGE WITHOUT ENTROPY d( = ] d = £
CHANGE: NONLINEAR ENERGY FUNCTION & = +, B = +,
4 4

If d(S;;)/dz=0, i.e., zero entropy change, we have from
Eqg. (7), and the definition ofC that (¢ ﬁ/D)/(dD/dz) and
= —(C?2)/(d(e ,)?/dZ). We assume, in this case, that the
forces that drive the phase-space evolution are smoothly YX'X'),
varying in space and time, i.e., no significant stochastic d(~—]
forces are present, and we are in the infinite resolution limit. 5 =

In the following analysis we derive a differential equation dz ’
for the rms emittance change under general time-dependent
and nonlinear forces. Note that we use emittacbhange and using Eq(8), we may evaluate the Twiss parameters for
rather than just emittancgrowth The emittance may in- each slice as
crease or decrease depending on the details of the beam dy-

Sg’n

namics.
We now consider a general zero-entropy-change case, q
corresponding to infinite resolutio®{=0), in which where a'=y— mdpe (XKy) ¢+ 3,5 (XEso¢

each slice is moving under transverse space-charge forces
gEs(X,¢,2), externally applied time-dependent forces _
qE.(x,Z,2) (e.g., from rf fields, wake fields, ej¢c.external ~ CITIN
time-independent magnetic or electric focusing forces repre- ~eon(XEx— Egn @
sented byqK,(x,2z), and longitudinal time-dependent elec- ’
tric forces qE,(x,{,z), such that the motion of individual

particles in each slice is given by B’ :2a+(

ot qE(¢, 29X’ N gKx(X,2) QqEsdx,¢,2) N qE«(x,¢,2)
mc B2y mc By mcB2y? mc2B2y . 2 ) 2q ,
. 7 (XKt mZBy% (X"Eso¢

=0, )

qEz (Eg,n)’) ~
Y

2q (
——=—(X'Ey);— =
where the prime indicates the derivative with respect,tq mc*Be; e mc*BZy  ern
is the particle charge, amdcgBy is the longitudinal momen-
tum. In Eq.(8) and subsequent analysis, we assume xhat
<1. We can determine the change of emittance with longiwhere ( ), indicates an average over a slice. After some
tudinal distance by differentiating E¢7) to obtain straightforward algebra, we can rewrite Ef) as

de 2(2)  2q [(X"Esd{(x®)—(xx"}{XEs
dz My | — Y2(X E (XD — (XX WXE) + (X" K J{X2) — (XX }(XK,))

_dC? d(F,?
=<8g,n>ZE+CZ R (10
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where () represents the average over the entire bunch. Wing fields. We see that emittance growth in the zero-entropy-

identify changes inC as resulting from time-dependent change case can be characterized by a general energy prin-

forces. ciple in the form of Eq(11). In the case where no emittance
We note that the focusing forces may be decomposed intgrowth occurs, expansion and contraction of the bunch result

a sum of two terms: the first is the linear, phase-independerih simple exchanges between potential and kinetic energy.

term; the second contains the nonlinear and the phase- The terms on the right hand side of E@1) are similar in

dependent terms, i.eEs=a;x+E5, Ey=a,x+E;, and form; therefore we may simplify our notation by defining a

Ky=asx+K} , where* indicates a term which is nonlinear general nonlinear energy functidh such that

in x and/or phase dependant, aagd, a,, anda; are con-

stants. Therefore, the terms on the right-hand side of Hjj.

can be rewritten as 0'(2)= 1 d[U($)—Un(2)] N d[V(2)—V(2)]
Py dz dz
(X" Es(X?) = (XX )(XEs = (X' Eg){(X?) = (X' )(XE} s d[W(z) —Wy(2)]
’ dz '
~ (B dlU@) - Uy(2)]
~gN dz ’
Then we can write a simpler form of E¢L0) ase)(2)=
, N L N [—(x®)y/ImSNe,(2)JU'(2). If a beam distribution is
(X"Exp{x%) = (xx ) (X Ex) = (X"E )(X) = (XX }(XEY) matched in to a transport system such that the right hand side
of Eq. (11) is zero, then no emittance growth occurs. There-
B (x?) d[V(2)—Vo(2)] fore, matching of a beam into a transport system simply re-
T gN dz ' quires thatU’ =0.

The emittance changes described by Edl) are deter-
ministic, not stochastic, and can be positive or negative de-
(XK ) = (X M (X Koy = (XK M(X2) — (xx' WXKE ) pending on the details of the beam dynamics. The time-
dependent forces give rise to changes in the correlated
) emittance coefficient, and the forces that are nonlineanin
ﬂ d[W(z) —Wo(2)] give rise to the slice emittance growth. Application of appro-
gN dz ' priate forces, such as the inverse of the forces that caused
emittance growth, will result in removal of the emittance
growth if no entropy growth has occurred.

A practical demonstration of emittance growth reversal
can be found in rf electron photoinjectors where solenoidal
emittance compensation is ugé. In this case space-charge

~2 2 forces and rf forces combine to introduce correlations into
& nl(2) = 200y iz dlU(2) = Uo(2)] the bunch, and result in large emittance growth over the first
dz meN |y dz few centimeters of beam acceleration. Because of rapid cool-
ing of the bunch in the longitudinal direction during accel-
d[V(z)—Vo(2)] d[W(z)—Wy(z)] eration, initially there is a negligible diffusion of the particles
+ dz + dz : from slice to slice. The emittance growth may be removed by
appropriate focusing of the bungB,25], resulting in elec-
tron beams of unprecedented brightngs26,27, i.e., C(2)
grows and can be brought back close to unity when appro-
priate focusing forces are applied.
The expressions in Eq11) correspond to the emittance
growth resulting from self-field and exyernal-fleld energy \, EMITTANCE GROWTH WITH ENTROPY CHANGE:
changes, .whereJ is the space.—charge field energy Qf the GENERALIZED FREE ENERGY FUNCTION
beam,U, is the space-charge field energy of the equivalent
uniform beam,V is the transverse kinetic energy of the  We now consider cases where the entropy of the bunch
bunch induced by the external time-dependent foregsis  changes. We note that bofh and the slice emittance can
the kinetic energy that would have been induced if the transincrease or decrease. The entropy of the distribution, how-
verse rf forces were linear ix and phase independeit/is  ever, will tend to increase. Such irreversible events can be
the transverse kinetic energy of the bunch induced by thériven by such effects as Coulomb collisions and thermal
external time-independent focusing forces, \glis the ki-  diffusion [28,29, space-charge wave breakin®,30,31, rf
netic energy that would have been induced if the externahoise, or phase-space filamentation on the scale of the cell
focusing forces were linear iv. The portion of the expres- size A, [12].
sion in Eqg.(11) involving the space-charge field energy has We can include the entropy change in our expression for
been derived previousl{2,22—-24 for the limited case of emittance growth by combining Eq&) and (10) and rear-
drifting beams with linear time-independent external focus+anging terms. This results in a generalized expression for

so that

11
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the emittance growth that involves both the reversible and There is no guarantee that reversible emittance growth
irreversible components: can in fact be reversed. This is because, in the finite resolu-

tion case, effective entropy growth can occur in the absence
of stochastic phenomena within the beam. The degree of

~,_ — ¥ [ 1 dU-U] N d[V—Vo] achievable reversibility depends on our ability to apply cor-
& " mcNe, | y? dz dz rective forces to the bunch. For example, it is possible to
measure the phase-space distribution with a fine resolution,

. and to conclude that no entropy growth has occurred. If,

d[W—W;] dsy h . .

+ —Tef owever, we are unable to apply corrective forces on this

dz dz fine scale, we should conclude that effective entropy growth
has occurred and should recalculate the entropy using a

— y(x?) coarser scale. Therefore, our choiceAgfand 8, should be

= mans. "= TerSiy) made with reference to the spatial and temporal resolution of
" our corrective apparatus.
A guestion which is related to reversibility is as follows:

2
__ 7<X~> E’ (12) When presented with a beam of given phase-space distribu-
mEstn ' tion and emittance, what are the criteria for determining

whether or not the emittance may be reduced by the appli-
cation of deterministic forces? Based on our previous discus-
sion there appear to be two conditions under either of which
the emittance may be reducdd) if the correlated emittance
coefficient C>1; and (2) if the distribution parameteD
<2em, whereD=[A, exp@§,/2kgN)1/(es ).

where To= (Mm% Jkgy(x?)) is the effective transverse
temperature of the beam in the laboratory frafig and

F :.U —TeSy) - Note that the a_boye d_ef|n_|t|(_)n Gl does . Under condition(1), the emittance reduction may be ac-
r_10t_|mply that the pha_lse space dlStI‘!butIOﬂ is in thermal eq.u"complished by applying time-dependent forces. Under con-
librium. We have defined a generalized free-energy funCt'OjStion (2), for emittance reduction to occu, must increase

F, which is analogous to the familiar Helmholtz free energy.\ynile the emittance decreases in order to k&

constant.

. Analysis of the generalized free-energy functio.n provides,:or example, in the latter case, take a&pspace-charge-
insight into phenomena that have been noted in previougominated beam that has an initially uniform distribution and
work. The systentin this case the phase space of the bunch¢ycys jt nonlinearly, so that it becomes more Gaussian in
will evolve so thatF’ moves toward a zero value, i.e., the form.
emittance growth or reduction stops. Changes irfor con- Another consequence of the analysis presented here is that
stant rms emittance, correspond to expansions and contragntropy growth does not necessarily imply emittance growth.
tions of the bunch. In the case of a cold beam, where thgve see from Eq(11) that changes in entropy can, in prin-
space charge dominates over the emittance, and in the abiple, be offset or overcome by the application of appropriate
sence of external nonlinear forces, theterm can be much nonlinear focusing forces.
greater than the TS term, and the distribution will tend to-
ward uniformity[2,22—-24, its lowest energy statéWe note
that for T=0 the appropriate Maxwell-Boltzmann distribu- Vil. CONCLUSION
tion is a uniform distributior}17]). In the case of a hot, i.e., A detailed analysis of the time scales for the onset of
emittance-dominated beam, the TS term dominates, leadingreversible dynamics and entropy growth in particular cases
to a Gaussian transverse distribution such as in high energy beyond the scope of this paper. An approach using the
storage ringgd20,21] where space-charge forces are negli-Fokker-Planck equatiof#,22,28—32 may be adapted to de-
gible. In the case where nonlinear external forces dominatgermine the stochastic entropy growth rate in certain cases. A
the distribution function should relax to a form appropriate touseful approach for future work will be to use particle simu-
that force, such thad[ W(z) —Wjy(2)]/dz=0, and such that |ations to evaluate the entropy changes in various situations
the emittance growth stops, i.e., the beam distribution hagf interest directly, so as to determine whether or not phase-
been transformed in to a matched distribution for the transspace evolution can be described by an equation such as Eq.
port system. Furthermore, if the beam distribution is in ther{11), and to access the validity of other predictions of the
mal equilibrium, and matched into the transport systee,  theory presented herein. Recent progress in the experimental
U’ =0), then no entropy growth can occ(ire., S'=0) and  mapping of phase space on a submicrobunch scale offers the
hence no emittance growth occurs. possibility of the testing of some of the concepts outlined in

In practice, we can consider emittance growth to have twdhis paper.
components: the reversible part whe&x&=0, and the irre-
versible part whereAS>0, such thatAz(z)?°=A%(2)?
iAE(z)é, where the subscript® and| stand for reversible
and irreversible, respectively. A determination as to what
portion of the emittance growth is reversible in a particular  This work was supported by the Office of Naval Research
process can be made by evaluating the entropy change usimgder Contract No. N00014-91-c-0226. The author would
Eq. (2). Whether or not entropy growth has occurred will like to acknowledge stimulating discussions with B. E. Carl-
depend, among other things, on the choicé\adnd &¢. sten, M. Reiser, and T. P. Wangler.
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