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Reversible and irreversible emittance growth

Patrick G. O’Shea*
Free-Electron Laser Laboratory, Department of Physics, Duke University, Durham, North Carolina 27708-0319

~Received 30 June 1997!

Emittance growth in bunched charged particle beams in linear accelerators is considered in the case of a
Hamiltonian system where nonlinear and time-dependent forces are dominant. Emittance growth is divided
into two classes: reversible and irreversible depending on the corresponding entropy change. We consider the
case where the measurement resolution is important. We show that a generalized free-energy function acts as
a driver for phase-space evolution and emittance growth.@S1063-651X~98!09501-4#

PACS number~s!: 41.75.2i, 29.27.Fh
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I. INTRODUCTION

In this paper we investigate the issue of the reversibi
of rms emittance growth in Hamiltonian systems. We disc
the emittance growth of bunched beams in the presenc
time-dependent nonlinear space-charge and external fo
In particular, we consider the case of nonthermalized rela
istic electron beams@1# in linear accelerators where interpa
ticle collisional processes are not important in determin
emittance growth. To determine whether emittance growt
reversible or not, we consider the changes in the entrop
the distribution in the case where the resolution of the pha
space measurement~in simulation and in experiment! is of
significance. In addition, we consider a generalized fr
energy principle, which includes external and internal no
linear and time varying forces. We derive an expression fo
generalized thermodynamic potential, analogous to
Helmholtz free energy, which may be considered to act a
driver for emittance growth.

The topic of reversible and irreversible emittance grow
is related to that of reversible and irreversible beam dyna
ics, which have been addressed previously both theoretic
@2–4# and experimentally@5,6# for special cases. In previou
work the onset of irreversible dynamics has been descr
in terms of the cessation of laminar particle motion as ma
fested by trajectory crossing in phase space in the infi
resolution limit. The possibility that rms emittance grow
resulting from time-dependent space-charge forces in rf p
toinjectors could be reversible under certain circumstan
was proposed by Carlsten@3#. The validity of this proposal
has been demonstrated experimentally both indirectly@5# and
directly @6#. There are many other forms of emittance grow
which may under certain circumstances be reversible. In
dition to the aforementioned space-charge effects, we ha
number of other forces, e.g., time-dependent rf fields, n
linear focusing, wake fields, and coherent synchrotron ra
tion in bends. The purpose of this paper is to develo
general formalism. Therefore, we do not discuss the de
of specific emittance growth mechanisms. A comprehens
treatment of emittance growth mechanisms can be foun
Ref. @7#.

The rms emittance is a practical, and widely used, fig
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of merit for beam optical quality. We define the normaliz
rms emittance of a bunch as @8,9# «̃n,x(z)
5(1/mc)A^x2&^px

2&2^xpx&
2, wherez is the laboratory co-

ordinate of the beam centroid, andx and px are conjugate
spatial and momentum coordinates, respectively, the bra
ets represent averages over the particle distribution,m is the
particle mass, andc is the velocity of light. Similar expres-
sions can be written for they and z emittances. It is well
known that «̃n,x is invariant under time-independent line
symplectic transformations@10#, but not necessarily in othe
deterministic processes such as when nonlinear forces
forces that are correlated with the longitudinal position in t
particle bunch, are present.

In Sec. II we begin our analysis by introducing an entro
concept suitable for use with bunched beams where the r
lution of a measuring apparatus is considered. In Sec. III
develop a variant of the relationship between the entropy
the rms emittance of the bunch, in which we consider
bunch to comprise a number of sub-bunches or slices in t
or in longitudinal spatial coordinates. In Sec. IV, we intr
duce the concept of an emittance correlation coefficientC as
a measure of the degree in which differential rotation of
phase space of individual slices resulting from tim
dependent forces contributes to the total emittance of
bunch. We show that, even when increasing external e
tance forces are included, a generalized free-energy princ
is valid. We use these concepts to develop a formalism
emittance growth both with and without entropy growth
Secs. V and VI.

II. ENTROPY CONCEPT

The general connection between emittance and entr
was made over two decades ago by Lawson, Lapostolle,
Gluckstern @11#. More recently, the connection betwee
emittance growth and entropy growth has been noted b
number of other authors@4,8,12–16#, and has been devel
oped in connection with beams where non-Hamiltonian s
chastic processes are important and where the external fo
are linear and time independent@4#.

In equilibrium thermodynamics, entropy is considered
be either a macroscopic quantity or a microscopic quantity
a statistical ensemble. In the macroscopic thermodyna
concept, entropy cannot be defined for a system that is no
thermal equilibrium. In general, beams in linear accelerat
1081 © 1998 The American Physical Society
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1082 57PATRICK G. O’SHEA
are not in thermal equilibrium@17#, and the nonequilibrium
region may extend from the cathode to the beam dump
this paper we will consider only the statistical interpretati
of entropy as a measure of the information available abo
distribution.

In the most general sense the statistical entropy of a
tem can be written@18#

S52kB(
i

f i ln~ f i !, ~1!

wherekB is Boltzmann’s constant,i denotes a microcanoni
cal state of the system,f i is the statistical probability of tha
state, and( i f i51.

In the case of a bunched beam with a very large num
of particles (N) per bunch we can write the sum as an in
gral by noting that a state corresponds to a six-dimensio
volume elementA65dxdpxdydpydzdpz , and the probabil-
ity is equivalent to the product ofA6 times the distribution
function r65r(x,px ,y,py ,z,pz), so that

S652kBNE r6ln@A6r6#dx dpxdy dpydz dpz ~2!

where we choose the normalization*r6(x)d6x51. The time
derivative of the entropy is given by Ṡ5
2kBN*ṙ6ln@A6r6#dx dpxdy dpydz dpz . Therefore the entropy
of a distribution is invariant in a Hamiltonian system
which Liouville’s theorem is valid,if the variation of r6
across the cell is negligible.

How should we choose the size of the volume elem
A6? The quantum-mechanical lower bound is\3, which is
an unrealistically small value for a practical system. Suc
volume element would have a two-dimensional normaliz
emittance of 3.831027 mm mrad. Therefore, we shoul
choose a larger value ofA6 based on the limits of our ability
to make observations of the beam, i.e., on the resolution
our instrumentation, on the precision with which we can a
ply external forces, or on the limits of physical phenome
of interest. It is possible to consider that an apparatus
signed to measure emittance by mapping the phase-s
distribution could also be used to measure entropy. S
devices include so-called pepper pots, and slit-and-colle
devices@19#. A suitable choice forA6 might relate to the
resolution of such an apparatus. Therefore, we assume
we have no knowledge of changes in the phase-space de
on scales smaller thanA6 . All techniques for measuring
phase-space distributions involve segmentation of data
bins analogous toA6 , or its lower-dimensional analog. If w
identify A65DxDpxDyDpyDzDpz , @or as we will discuss
later its two-dimensional~2D! analogA25DxDpx#, with the
resolution of the measuring apparatus, thenr6 represents the
averaged value over each cell. For the subsequent analys
be meaningful, one must chose the size of the volume
ment to be much less than the volume occupied by the be

Whether or not a measured entropy change occurs
specific case will depend on our choice ofA6 , i.e., on how
coarsely we divide phase space. If our apparatus had in
tesimal resolution and infinite dynamic range, then th
would be no possible entropy change for a Hamiltonian s
tem. Because of the coarse graining of the distribution fu
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tion, it is possible for a process that is strictly Hamiltonian
nature to result in an entropy change if a larger, rather tha
smaller, value ofA6 is chosen@12#. This concept will be
important in determining whether or not emittance growth
reversible in a particular situation.

We may also consider the cell size concept in relation
the trajectory-crossing condition for the onset of irreversi
dynamics of previous work@2,3#. Trajectories with an initial
separationDR in phase space which later have zero sepa
tion are said to have crossed. If we consider two trajecto
with initial separationDR.A6 A6, that later have a separatio
DR<A6 A6, then the entropy will appear to have grown. S
ting A650 in the entropy formalism results in an irrever
ibility criterion equivalent to the nonlaminarity condition.

III. RELATIONSHIP BETWEEN ENTROPY
AND RMS EMITTANCE

We now proceed to develop a useful relationship betw
entropy and rms emittance. In the analysis that follows,
will develop a formalism that allows for rms emittanc
growth both with and without entropy growth.

When considering bunched beams with longitudinal
well as transverse structures, it is useful to divide the bu
into a number of sub-bunches or slices of longitudinal len
dz in the laboratory frame, wheredz!sb the bunch length,
andz is the longitudinal coordinate of the sub-bunch relati
to the centroid of the bunch. Consider each sub-bunch
contain a large number of particles,Nz . The ensemble en
tropy of the bunch is the sum of the entropies of the s
bunches, i.e.,S(z)5(zSz(z), whereSz is the entropy of the
sub-bunch, andz is the coordinate of the bunch centro
relative to the laboratory. Furthermore, we assume that
longitudinal momentum spreaddpz within each slice is small
relative to the average momentum of the slice. If the lon
tudinal density distribution is r(z,pz), then Nz

5dzdpzr(z,pz). The slice entropy and the rms emittan
can be readily evaluated for specific distribution functions
we consider a specific class of distribution functions wh
the four-dimensional distribution function of each slice c
be written in separable form such thatr(x,px ,y,py)
5rx(x,px)ry(y,py), then, from Eq. ~2!, Sz(z)5Sz,x(z)
1Sz,y(z), where

Sz,x~z!52kBdzdpzr~z,pz!E ry~y,py!dy dpy

3E rx~x,px!lnS rx~x,px!

Ax
Ddx dpx ,

Sz,y~z!52kBdzdpzr~z,pz!E rx~x,px!dx dpx

3E ry~y,py!lnS ry~y,py!

Ay
Ddy dpy ,

and

dxdpx5Ax , dydpy5Ay .

For clarity, in this paper we will assume cylindrical symm
try such that,Sz(z)52Sz,x(z), Ax5Ay5A2 , and that«̃x,n
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57 1083REVERSIBLE AND IRREVERSIBLE EMITTANCE GROWTH
5«̃y,n5«̃z,n(z,z). The number of occupied cells in 2D pha
space is given by exp(Sz/2kBNz) @14#. Therefore the total
phase-space area~S! occupied by the slice isS
5A2exp(Sz/2kBNz). For a given distribution function, we
can write S/ «̃z,n5D, where D is a unitless distribution-
dependent parameter which may vary from slice to sli
Therefore, we can write the relationship between the s
entropy and the slice emittance as

Sz52kBNzlnS D «̃z,n

A2
D . ~3!

We can evaluateD for specific distributions, as shown i
Table I. We expectD to be largest for a Gaussian distrib
tion because the maximum entropy state corresponds to
of an equilibrium Maxwell-Boltzmann distribution, whic
will have a Gaussian distribution in phase space when sp
charge forces are not important@20,21#.

Because the entropy of the bunch is simply a sum of
subentropies, the bunch entropy does not depend on the
entation of the individual slices in phase space. Therefor
is useful to introduce a quantity called the entropy of t
average sliceS^z& , which is defined with respect to the av
erage slice emittance of the bunch as

S^S&~z!52kBN lnS D^«̃z,n&
A2

D , ~4!

where ^«̃z,n&5*«̃z,nr(z)dz is the slice emittance average
over the bunch.

S^z& has similar properties to the total entropy of t
bunch. In particular,DS^z&.0 whenDS.0, andDS^z&50
whenDS50.

IV. DIFFERENTIAL PHASE-SPACE ROTATION AND THE
CORRELATED EMITTANCE COEFFICIENT

In our formalism, we consider transverse emittan
growth to have two components:time dependentand time
independent. The time-dependent component involves t
differential rotation of the slices in phase space. In a tim
dependent transformation the orientation of the individ
slices with respect to each other is invariant. For tim
dependent transformations the relative orientations of
slices may change, and result in a growth in the rms em

TABLE I. Distribution parameter (D) for some common distri-
bution functions.

Distribution (r 5x21x82) Distribution parameter (D)

Gaussian e2r 2/2s2 2ep'5.44p

Parabolic
12

r 2

a2 r<a

0 r .a 5p

Uniform 1 r<a

0 r .a 4p

Hollow r 2e2r 2/2s2 3.105p
.
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tance of the bunch. Various effects such as nonuniform l
gitudinal space-charge distributions, transverse wake fie
and phase-dependent rf forces will result in the twisting
the phase space being correlated with position of the in
vidual slices in the bunch. The second, time-independ
component of emittance growth results from growth in t
emittance of individual slices. Such time-independent grow
results from nonlinear spatial forces.

We assume, for convenience, that on scales shorter
the slice lengthdz that the transverse phase space is unc
related withz, i.e., we have no knowledge of the details
the time dependence of the distribution on scales shorter
dz. On scales longer thandz, we assume that there may b
correlations between the phase space and the location o
slice in the bunch.

The phase-space orientation of thei th slice may be char-
acterized by Twiss parameters:â i5â(z,z), b̂ i5b̂(z,z),
and ĝ i5ĝ(z,z), with â i

2115b̂ i ĝ i . We envision processe
where the phase-space distribution of the beam evolves
that the Twiss parameters change in a fashion determine
z-dependent forces. If the forces that determine the pha
space evolution are correlated inz ~i.e., nonstochastic!, then
the phase-space evolution will be correlated inz also. The
emittance change of each sub-bunch is determined by n
linear and stochastic transverse forces.

We can write the normalized rms emittance of the bun
for thex coordinate in terms of the slice emittances and sl
Twiss parameters as

«̃ n
2~z!

5E «̃z,n~z,z!b̂~z,z!r~z!dzE «̃z,n~z,z!ĝ~z,z!r~z!dz

2S E «̃z,n~z,z!â~z,z!r~z!dz D 2

5^«̃z,n~z,z!b̂~z,z!&^«̃z,n~z,z!ĝ~z,z!&

2^«̃z,n~z,z!â~z,z!&2. ~5!

To aid in distinguishing between time-dependent and tim
independent emittance growth, we define an rms emitta
correlation coefficientC such thatC2(z)5 «̃ n

2/^«̃z,n&
2. Since

«̃n(z)>«̃z,n always,C(z)>1 always. When all the equiva
lent phase-space ellipses of the slices are aligned,C51, its
minimum value. We consider the phase-space slice to
aligned when the Twiss parameters are independent oz,
such thatâ, andb̂, andĝ can be taken outside the avera
operators in Eq.~5! resulting in «̃n(z)5 «̃z,n . When the el-
lipses are not aligned,C.1, because of the differential ex
pansion of the slices and rotation of each phase-space
with respect to its neighbor. DifferentiatingC(z) with re-
spect toz gives

d«̃ n
2

dz
5^«̃z,n&

2
dC2

dz
12«̃n

2~z!
d~ ln^«̃z,n&!

dz
. ~6!

Changes in the total rms emittance of the bunch oc
either from changes in the phase-space correlations or f
changes in the slice emittances. It is also possible for«̃n to
remain constant whileC decreases, and for the slice em
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1084 57PATRICK G. O’SHEA
tance to increase as the beam is transported through th
celerator. It is now appropriate to examine this in the cont
of entropy changes. Substituting Eq.~4! into Eq. ~6!, we
obtain

d«̃ n
2

dz
5^«̃z,n&

2
dC2

dz
2

2«̃ n
2

D

dD

dz
1

«̃ n
2

kBN

d~S^z&!

dz
. ~7!

Let us consider the physical interpretation of Eq.~7!. We
will consider two cases: one where the entropy chang
zero, the other where the entropy change is nonzero.

V. EMITTANCE CHANGE WITHOUT ENTROPY
CHANGE: NONLINEAR ENERGY FUNCTION

If d(S^z&)/dz50, i.e., zero entropy change, we have fro
Eq. ~7!, and the definition ofC that («̃ n

2/D)/(dD/dz)
52(C2/2)/(d^«̃z,n&

2/dz). We assume, in this case, that th
forces that drive the phase-space evolution are smoo
varying in space and time, i.e., no significant stocha
forces are present, and we are in the infinite resolution lim

In the following analysis we derive a differential equatio
for the rms emittance change under general time-depen
and nonlinear forces. Note that we use emittancechange
rather than just emittancegrowth. The emittance may in-
crease or decrease depending on the details of the beam
namics.

We now consider a general zero-entropy-change c
corresponding to infinite resolution (A250), in which where
each slice is moving under transverse space-charge fo
qEsc(x,z,z), externally applied time-dependent forc
qEx(x,z,z) ~e.g., from rf fields, wake fields, etc.!, external
time-independent magnetic or electric focusing forces rep
sented byqKx(x,z), and longitudinal time-dependent ele
tric forces qEz(x,z,z), such that the motion of individua
particles in each slice is given by

x91
qEz~z,z!x8

mc2b2g
1

qKx~x,z!

mc2b2g
2

qEsc~x,z,z!

mc2b2g3 1
qEx~x,z,z!

mc2b2g

50, ~8!

where the prime indicates the derivative with respect toz, q
is the particle charge, andmcbg is the longitudinal momen-
tum. In Eq.~8! and subsequent analysis, we assume thax8
!1. We can determine the change of emittance with lon
tudinal distance by differentiating Eq.~7! to obtain
ac-
t

is

ly
c
t.

nt

dy-

e,

es

e-

i-

d«̃ n
2~z!

dz
5^«̃z,nb̂8&^«̃z,ng&1^«̃z,nb̂&^«̃z,nĝ8&22^«̃z,nâ&

3^«̃z,nââ8&1^~ «̃z,n!8b̂&^«̃z,nĝ8&1^«̃z,nb̂&

3^~ «̃z,n!8ĝ&22^«̃z,nâ&^~ «̃z,n!8â&, ~9!

where«̃s,n and the Twiss parameters are functions of botz
andz. By noting that

â85

dH g^xx8&z

«̃z,n
J

dz
, b̂85

dH g^x2&z

«̃z,n
J

dz
,

and

ĝ85

dH g^x8x8&z

«̃z,n
J

dz
,

and using Eq.~8!, we may evaluate the Twiss parameters
each slice as

â85ĝ2
q

mc2b«̃z,n
^xKx&z1

q

mc2bg2«̃z,n
^xEsc&z

2 «̃z,n^xEx&z2
~ «̃z,n!8

«̃z,n
â,

b̂852a1S qEz

mc2b2g
2

~ «̃z,n!8

«̃z,n
D b̂,

ĝ852
2

mc2b«̃z,n
^x8Kx&z1

2q

mc2bg2«̃z,n
^x8Esc&z

2
2q

mc2b«̃z,n
^x8Ex&z2S qEz

mc2b2g
1

~ «̃z,n!8

«̃z,n
D ĝ,

where ^ &z indicates an average over a slice. After som
straightforward algebra, we can rewrite Eq.~9! as
d«̃ n
2~z!

dz
5

2q

mc2g F ^x8Esc&^x
2&2^xx8&^xEsc&

2g2~^x8Ex&^x
2&2^xx8&^xEx&1^x8Kx&^x

2&2^xx8&^xKx&!
G

5^«̃z,n&
2

dC2

dz
1C2

d^«̃z,n&
2

dz
, ~10!
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57 1085REVERSIBLE AND IRREVERSIBLE EMITTANCE GROWTH
where ^ & represents the average over the entire bunch.
identify changes inC as resulting from time-dependen
forces.

We note that the focusing forces may be decomposed
a sum of two terms: the first is the linear, phase-independ
term; the second contains the nonlinear and the ph
dependent terms, i.e.,Esc5a1x1Esc* , Ex5a2x1Ex* , and
Kx5a3x1Kx* , where* indicates a term which is nonlinea
in x and/or phase dependant, anda1 , a2 , and a3 are con-
stants. Therefore, the terms on the right-hand side of Eq.~10!
can be rewritten as

^x8Esc&^x
2&2^xx8&^xEsc&5^x8Esc* &^x2&2^xx8&^xEsc* &

52
^x2&
qN

d@U~z!2U0~z!#

dz
,

^x8Ex&^x
2&2^xx8&^xEx&5^x8Ex* &^x2&2^xx8&^xEx* &

5
^x2&
qN

d@V~z!2V0~z!#

dz
,

^x8Kx&^x
2&2^xx8&^xKx&5^x8Kx* &^x2&2^xx8&^xKx* &

5
^x2&
qN

d@W~z!2W0~z!#

dz
,

so that

d
«̃ n

2~z!

dz
5

22^x2&g

mc2N F 1

g2

d@U~z!2U0~z!#

dz

1
d@V~z!2V0~z!#

dz
1

d@W~z!2W0~z!#

dz G .
~11!

The expressions in Eq.~11! correspond to the emittanc
growth resulting from self-field and external-field ener
changes, whereU is the space-charge field energy of t
beam,U0 is the space-charge field energy of the equival
uniform beam,V is the transverse kinetic energy of th
bunch induced by the external time-dependent forces,V0 is
the kinetic energy that would have been induced if the tra
verse rf forces were linear inx and phase independent,W is
the transverse kinetic energy of the bunch induced by
external time-independent focusing forces, andW0 is the ki-
netic energy that would have been induced if the exter
focusing forces were linear inx. The portion of the expres
sion in Eq.~11! involving the space-charge field energy h
been derived previously@2,22–24# for the limited case of
drifting beams with linear time-independent external foc
e

to
nt
e-

t

s-

e

al

-

ing fields. We see that emittance growth in the zero-entro
change case can be characterized by a general energy
ciple in the form of Eq.~11!. In the case where no emittanc
growth occurs, expansion and contraction of the bunch re
in simple exchanges between potential and kinetic energ

The terms on the right hand side of Eq.~11! are similar in
form; therefore we may simplify our notation by defining
general nonlinear energy functionÛ such that

Û8~z!5
1

g2

d@U~z!2U0~z!#

dz
1

d@V~z!2V0~z!#

dz

1
d@W~z!2W0~z!#

dz
.

Then we can write a simpler form of Eq.~10! as «̃n8(z)5

@2^x2&g/mc2N«̃n(z)#Û8(z). If a beam distribution is
matched in to a transport system such that the right hand
of Eq. ~11! is zero, then no emittance growth occurs. The
fore, matching of a beam into a transport system simply
quires thatÛ850.

The emittance changes described by Eq.~11! are deter-
ministic, not stochastic, and can be positive or negative
pending on the details of the beam dynamics. The tim
dependent forces give rise to changes in the correla
emittance coefficientC, and the forces that are nonlinear inx
give rise to the slice emittance growth. Application of appr
priate forces, such as the inverse of the forces that cau
emittance growth, will result in removal of the emittanc
growth if no entropy growth has occurred.

A practical demonstration of emittance growth rever
can be found in rf electron photoinjectors where solenoi
emittance compensation is used@3#. In this case space-charg
forces and rf forces combine to introduce correlations i
the bunch, and result in large emittance growth over the fi
few centimeters of beam acceleration. Because of rapid c
ing of the bunch in the longitudinal direction during acce
eration, initially there is a negligible diffusion of the particle
from slice to slice. The emittance growth may be removed
appropriate focusing of the bunch@3,25#, resulting in elec-
tron beams of unprecedented brightness@5,26,27#, i.e., C(z)
grows and can be brought back close to unity when app
priate focusing forces are applied.

VI. EMITTANCE GROWTH WITH ENTROPY CHANGE:
GENERALIZED FREE ENERGY FUNCTION

We now consider cases where the entropy of the bu
changes. We note that bothC and the slice emittance ca
increase or decrease. The entropy of the distribution, h
ever, will tend to increase. Such irreversible events can
driven by such effects as Coulomb collisions and therm
diffusion @28,29#, space-charge wave breaking@2,30,31#, rf
noise, or phase-space filamentation on the scale of the
sizeA2 @12#.

We can include the entropy change in our expression
emittance growth by combining Eqs.~7! and ~10! and rear-
ranging terms. This results in a generalized expression
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the emittance growth that involves both the reversible a
irreversible components:

«̃ n85
2g^x2&
mc2N«̃n

S 1

g2

d@U2U0#

dz
1

d@V2V0#

dz

1
d@W2W0#

dz
2Tef

dŜ z&

dz D
5

2g^x2&
mc2N«̃n

~Û82TefS^z&8 !

5
2g^x2&
mc2N«̃n

F̂8, ~12!

where Tef5(mc2«̃ n
2/kBg^x2&) is the effective transvers

temperature of the beam in the laboratory frame@7#, and
F̂85Û82TefS^z&8 . Note that the above definition ofTef does
not imply that the phase space distribution is in thermal eq
librium. We have defined a generalized free-energy funct
F̂, which is analogous to the familiar Helmholtz free energ

Analysis of the generalized free-energy function provid
insight into phenomena that have been noted in previ
work. The system~in this case the phase space of the bun!
will evolve so thatF̂8 moves toward a zero value, i.e., th
emittance growth or reduction stops. Changes inT, for con-
stant rms emittance, correspond to expansions and con
tions of the bunch. In the case of a cold beam, where
space charge dominates over the emittance, and in the
sence of external nonlinear forces, theÛ term can be much
greater than the TS term, and the distribution will tend
ward uniformity@2,22–24#, its lowest energy state.~We note
that for T50 the appropriate Maxwell-Boltzmann distribu
tion is a uniform distribution@17#!. In the case of a hot, i.e.
emittance-dominated beam, the TS term dominates, lea
to a Gaussian transverse distribution such as in high en
storage rings@20,21# where space-charge forces are neg
gible. In the case where nonlinear external forces domin
the distribution function should relax to a form appropriate
that force, such thatd@W(z)2W0(z)#/dz50, and such that
the emittance growth stops, i.e., the beam distribution
been transformed in to a matched distribution for the tra
port system. Furthermore, if the beam distribution is in th
mal equilibrium, and matched into the transport system~i.e.,
Û850!, then no entropy growth can occur~i.e., S850! and
hence no emittance growth occurs.

In practice, we can consider emittance growth to have
components: the reversible part whereDS50, and the irre-
versible part whereDS.0, such that D«̃(z)25D«̃(z) I

2

6D«̃(z)R
2, where the subscriptsR and I stand for reversible

and irreversible, respectively. A determination as to w
portion of the emittance growth is reversible in a particu
process can be made by evaluating the entropy change u
Eq. ~2!. Whether or not entropy growth has occurred w
depend, among other things, on the choice ofA anddz.
d
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-
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-
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There is no guarantee that reversible emittance gro
can in fact be reversed. This is because, in the finite res
tion case, effective entropy growth can occur in the abse
of stochastic phenomena within the beam. The degree
achievable reversibility depends on our ability to apply c
rective forces to the bunch. For example, it is possible
measure the phase-space distribution with a fine resolut
and to conclude that no entropy growth has occurred.
however, we are unable to apply corrective forces on t
fine scale, we should conclude that effective entropy grow
has occurred and should recalculate the entropy usin
coarser scale. Therefore, our choice ofA2 anddz should be
made with reference to the spatial and temporal resolutio
our corrective apparatus.

A question which is related to reversibility is as follow
When presented with a beam of given phase-space distr
tion and emittance, what are the criteria for determini
whether or not the emittance may be reduced by the ap
cation of deterministic forces? Based on our previous disc
sion there appear to be two conditions under either of wh
the emittance may be reduced:~1! if the correlated emittance
coefficient C.1; and ~2! if the distribution parameterD
,2ep, whereD5@A2 exp(Ŝz&/2kBN)#/^«̃s,n&.

Under condition~1!, the emittance reduction may be a
complished by applying time-dependent forces. Under c
dition ~2!, for emittance reduction to occur,D must increase
while the emittance decreases in order to keepS^s& constant.
For example, in the latter case, take a space-cha
dominated beam that has an initially uniform distribution a
focus it nonlinearly, so that it becomes more Gaussian
form.

Another consequence of the analysis presented here is
entropy growth does not necessarily imply emittance grow
We see from Eq.~11! that changes in entropy can, in prin
ciple, be offset or overcome by the application of appropri
nonlinear focusing forces.

VII. CONCLUSION

A detailed analysis of the time scales for the onset
irreversible dynamics and entropy growth in particular ca
is beyond the scope of this paper. An approach using
Fokker-Planck equation@4,22,28–32# may be adapted to de
termine the stochastic entropy growth rate in certain case
useful approach for future work will be to use particle sim
lations to evaluate the entropy changes in various situat
of interest directly, so as to determine whether or not pha
space evolution can be described by an equation such as
~11!, and to access the validity of other predictions of t
theory presented herein. Recent progress in the experime
mapping of phase space on a submicrobunch scale offer
possibility of the testing of some of the concepts outlined
this paper.
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